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ABSTRACT

This paper presents a significant improvement over the
hitherto available linear dominant system design techniques
for guaranteeing system response within prescribed bounds,

despite large plant parameter variations. Noteworthy

features of the new technique are:

1) The mapping of the plant parameter space into

the closed-loop system space is exact and permits

application to a much wider and more realistic

class of problems than previously possible;

2) It is shown how the loop transmission band-
width may be made very much smaller than in the

previous designs, thus considerably extending

the applicability of the dominant approach,

because of its drastically reduced sensitivity

to internal noise.
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OPTIMUM LINEAR ADAPTIVE DESIGN OF DOMINANT

TYPE SYSTEMS 
WITH 

LARGE PARAMETER VARIATIONS

1. Horowitz
Dept. of Electrical Enginoering, University of Colorado, Boulder, Colo.

A. Introduction

Despite the many recent advances in control, theory, one of

the moEt fundamental problems is far from solved, This is the

problem of optimum design (for a given prescribed complexity)
of a system with parameter variations, so that its time

response lies within specified tolerances. By optimum is here

meant the very important practical problem of minimizing the

effect of high-frequency senso.-, amplifier etc. noise, because

this is usually the dominant factor in determining the practical-

ity of a theoretical adaptive des^.gn. It is true that many

nonlinear adaptive structures have been proposed in the litera-

ture, but almost without exception there are no design procedures

for tailoring their detailed design to any specific numerical

problem, which is an essential step for optimization in the

above sense. Thus any one of these nonlinear structures may

possibly be Optimum foor "a given numeriCal Problem ow"L even for
a class, but neither the problem nor the class is known. Hence

nonlinear adaptive theory is as yet an art, rather than a

science. On the other band, some progress has been made in

developing such a science of linear adaptive theory but even

here the situation is far from satisfactory.

Consider the following basic problem: (1) There is a

single input-output plant with parameters which may lie (or

'Slowly" vary) within a given region in parameter space; (2)

Specific bounds on (say) the step response are prescribed, such

as acceptable range of rise-time, overshoot and settling time;

(3) Linear, time invariant compensation is to be used for

which the rms effect at the plant input of noise lumped at the

sensor, is to be in inimized. It can be categorically stated that

this fundamental problem in linear adaptive theory is not as
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yet satisfactori3y solved. The infinitesimal variations case has
been treated both for statistical 1-3 and deterministic situa-
tions. 4 The deterministic case for large parameter variations

has boon treated by means of frequency response, 516 and by

s-plane677 techniques. with the latter confined to dominant-type

formulations. The dominant approach is considered here and its

shortcomings noted, which are alleviated to a significant extent

by the present contribution.

The Dominant Roots Approach

In many problems it is reasonable to have the system re-

sponse be determined primarily by a small number of poles and

zeros, which in turn readil y permits time-domain performance

bounds to be translated into acceptable range of location of

these few dominant poles and zeros. The inevitable additional

poles are assigned "far-off". The presently available tech-

nique017 may best be described around the specific example of

Fig. 1, wherein ABCD is the region of variation of the complex

poles of a plant transfer function, whose dominant varying part

is

P = k/s (s 2 +SS p + Pp )	 (1)

k varies from 1 to 1000 in value; MNQR is the range of accept-

able dominant pole (with parameters S r , Pr ) location of the
system transfer function

leiT(s) --° Prpr F(s)/(s o + S S + Pr ) (s + p f ,; FF(o) = 1] ; (2)

p f is the closest far-off pole and F(s), contains within it all
other far--off poles and zeros; UVW is the boundary to the right

of which the far--off poles may not cross. One may argue over
the specific location and shape of the far-off pole boundary

UVW, but the important point is that such a choice must be

made if the design is to be of the dominant type. The range

MNQR,NRR is approximately that which has been suggested as
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a,(iceptablo in flight control. 8

Tho design philosophy Is to locate loop transmission FL(s)]

componsation zeros  N, 10) in or ttear MNQR, ITINSTU such that, with

suTficiontly large gain factor, the dominant closed-loop poles

are guaranteed to be in the acceptable MNQR range, despite the
variations in Sp ,1 P

1)
1 k in (1). Suppose the far-off open-loop

poles of tho loop trvDsmi-ssion L(s) are assigiied say at X1,

'RI P X2 in Fig. 1. Thosc locations must be such that over the

range kmin R,- k `-, 'max' the far-off closed-loop poles remain to

the left of the boundary UVW. From root-locus considerations,

it is clear that the greatest danger of boundary crossing is

at k m k max' In fact, in the optimum design, there is at

k - k max a closed-loop pole precisely on the boundary 
6 

1 say

at J in Fig. 1. Write L(s) in the form L(s) --- kK'n(s)/d(s)

whore n(s), d(s) are polynomials whose leading coefficients are

unity; K' is a constant. Lot Y,Y in Fig. I mark nominal plant,

and therefore loop transmission, poles. Since I + L(s) -

I + kK'n(s)/d(s) - 0 at s =-z OJ when k = k max' it follows that

k max K' = - d(OJ)/n(OJ); i.e.,

k	 K	 (0J) (yi) (Ti) (XI 
j) 2 (x- 1 J) 2 (X 2 J)	 (3a)

max	 (Z J) ('71 J)

Lot Y 1 represent a dominant closed-loop pole position (inside

MNQR, of course) when k = k mino Then,

C	 -Yt 2	 YT)2	 .
min x'	 (OY	 (YY	 CyY, (XIY') 	 (X 2Y I )

	 ( 3b)

(ZY I ) (YYI)
Hence,

k max (X I J) 2 ( 
i, j 2 (X2j)	

(0,f) (yi) (,Yj)/(Zj)	 (0j)

min	 (X 1 V (X Y 2 (X 2 Y , (OY , )(YY t )(TY 1 )/(Zyf )(fYT)	
K 1

(4)

with
A ( O yt)(yyi)(yy,) (Zj)( -Zj)	 (Oy1)(yy1)(YY1)K =	 -	 (5)1 (ZY,) CZY	 (Yi)	 (ZYI)(—Zyl)
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because (ZJ)(ZJ)/(YJ)(YJ)	 1, due to J being far-off relative
to the dominant 74, Y j Y 9 Y.

Suppose k max 
111r, 

min '_ 
1000. In Eq. (4), ` max (which is not

large) is determined by the geometrical pattern of X1' X 2 7 'PY
U,V,W and can be readily found in any specific problem. The
ratio OJ/K. in Eq. (4) must bear the brunt of satisfying the
large change in the plant gain factor kmax/kmin 

*
This leads

to large OJ; Tor example, it will later be found that even
in the optimized design 10JI J- 5600, which is at least 500
times as great as the largest magnitude dominant pole. It is
next shown that large OJ means large bandwidth over which the
compensation, denoted by G(s) I is p(-,rforming at least st:cw.d-
order differentiation with its noise amplification problems.
One way to see this is as follows, At s - OJ, the loop
transmission G(s)P(s)	 L(s) =- 1. But at s - OJ, IP(s) I
lk/s(s 2 +sS p + Pp) I ^ 1k/s 3 1 =-- Ik/(OJ) 3 1 	 is generally ex-
tremely small; therefore, the compensation magnitude IGWI	 1/ig
must be very large. Or, the above statement can be verified
by the following argument. At s	 OJ, L(s) = G(s)P(s)

Hence, at s = OJ, /_G(s) + //P(s) 1800 , i.e., in Fi	 I

F 2/X J+ 2Z-X J A +r /X2jl + I Zo J + /-Yj + Cyj - Z-Z J - ZZ J	 Of + Od0	 0
18b o . But e d 	 -/-oj + ZYJ + ZYJ - '5j - /_2j = /_0j - go +

-	 0
8 small. Hence, 8f A= 22X 1 J + 2/X 1 j + ZX 2 j = 900 - 6 < 900.
A pole at -a has an angle of 450 at s = ja. Since o f repre-
sents the totality of angles of the vectors from the poles of
G(s) to OJ and o f < 900 9 it follows that their effective
average corner frequency must be larger than OJ. In the Bode
plot, JG(jw)l therefore has a positive slope (whose asymptotic
value is 40 db. per decade) commencing at W = OZ and continuing
so beyond OJ. Thus G(s) performs second-order differentiation
over a very large frequency range. If, in practice, the plant
has its own additional far-off poles then the compensation
network must have corresponding additional cancelling zeros
and performs even higher order differentation. From
Eq. (4), (OJ)(X/K 1 ) = k max /k min = 1000 and since `max is not
largE, it follows that minimization of K I defined by (5),
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is extremely important, in order to reduce the bandwidth of

the compensation.

The proviouol.y available design techniques are deficient

in the following important aspects: (1) The mapping of

ABCD into a region which tics in MXQR is approximate. Viz.,

if A, B, ... 2 map into he point;: A;, B 1 , ... ( inside MNQR
of course) it is assantied in the calculations that AA' , BB'

KA', 9B', lA', IB 1 .., may be approximated by AR, BR, ...

where R is a fixed centrally chosen point inside MNQR. Hence

the design technique is satisfactory if and only if (a) the

acceptable region MNQR is both relatively small in area, and

(b) well removed from the plant pole range of variation ABCB

and (c) from the real axis, These are all significant short-

comings for in many, if Kiot most, control problems there is

a fairly large acceptable closed loop dominant pole range

whichh, often overlaps the range of plant pole variation.

An additional significant shortcoming is that (2) over a very

large frequency range, the slope of I L (j w) I is only -6 decibels

per octave so that the required gain margin of at least 20 log

Ik max /kmini requires many octaves (10 in the present example,

as 6 x 10 = 20 log 1000), which could be significantly reduced

by using a larger magnitude average slope, say -9 or -10 db

per octave. (It is important to note that the largest noise

contribution is in the last few octaves. A reduction in L(jw)

bandwidth by x octaves reduces the rms noise by a factor whose

order of magnitude is 2x .) However, this would require a more

complicated L(s) far-off pole-zero pattern, which is difficult

to include in a systematic s-plane design approach, but is

much more readily achieved by using frequency-response tech-

niques in this relatively "far--off" region. This paper presents

procedures for eliminating the above shortcomings.

B. Design in the Dominant Range - Case

Plant Gain Factor Alone Varies

If the plant pole and zero variations are small, although

the ,win variations are large, it is possible to achieve a con-

siderably more economical (smaller bandwidth) L,(s) than by the

previous methods. Ignoring the far-off poles except for the
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nearest, P., (in the notation of Bqs. 1 1 2) lot the dominant
part of L(s) bo

A

	

L d (S) = Ick ( Cs. 2 -t S 0 s + Po ) S(s 2 
rI S 

A 
s + P	 r7- Kk n d (s)/d d(s)

(6a)

and the corresponding dominant part of T(s) be
A

Td (S) r.- P rpf A."i 
2 + 8 r 's ^ 1 , Pr ) (s + P f) -:; JJ rp 

f 
/Dd (s)	 (6b)

From (5,6b)

	

d d (s) + Xk n d (S) - D d (S)	 (7)

Note from (1,6a) that not all the poles of the plant P are
necessarily in L d ; "" it may be helpful to cancel some poles
of P and replace them by others in L dt which is no problem in
this case where only the plant gain factor k varies. This is
also the reason for replacing the p (indicating plant) sub-
scripts of Eq. (1) by the isiioro general A (indicating loop trans-
mission) subscripts in Eq. (6a). Equating the zero degree co-
efficients in (7) gives

kK -.- P rpf/P 0	
(8)

Let Pr	 Pf * ) Dd	 oo, denote Pr , pf , D dy	 at k	 k min

	

(0y ., ♦	 (^O	 at s	 11 %7with P	 )kuY ')'.	 In Eq. (7)	 V tj	 V I whenPr 	 d

k = k min' so k mill X = Id d (OYI)/n d (OY I )I, which is exactly equal
to the extreme righthand side of (5), defining Kl ; i.e.,

	

k min K = Pr P  /p4  K1 	 (9)

The importance of K1 minimization has been previously em-
phasized in connection with Eq. 4. Eq. (9) indicates that there
are three variables available for this purpose. The choice of
P f * for K1 minimization is easy. The specs. require that -pf
(which is on the negative real axis) lies to the left of the
boundary UVW in Fig. 1, for all kmin < k < k max* According to
Eq. (7), -pf lies on the root loci of 1 + Kk n d (s)/d d (s) = 0'
From a simple, rough sketch of these root loci, it is easy to
see that as k increases, the real axis root moves to the left;



a
7

i . e . , 1) -	 * because P f 
x" 

has boon deb. ined as tLo value of
p f at k km inThe minimum valuo of p f 4 is therefore prop-

cisel,y that pormitted by the specs., i.e., by the intersec -

tion of UVW with the boundary (at -16.2 according to Fig. 1) .
The choice of Pr * in (0) co y.$ Iii minimization is next con-

sidered. Obviously, Lhe best choice of Pr * is the minimum
va7 vo of 'd permitted by the MNQR specification,    Since

is the magn itude of the line from the origin to any point
inside or on MNQR, the minimum value of Pr * corresponds to
a point at which a circle centered at the origin, gust grazes
MNQR, as shown in Fig. 2. (Pr * is used in Fig. 2 to denote
a poke position but this should not cause any confusion) . It
is necessary to guarantee that this choice for Pr * leads to
Sr , Pr' pf of (6b) which satisfy the specs. for all

k mi n
 ^- k ^ kmax. For -this purpose let the system dominant

characteristic equation Dd (s) at k `^kmin be denoted by

bd
* 
(s) ^ d  (s) + Kkmin nd (s)	 (10a)

and subtract (10a) from (7) , giving

Ad * (s) + K(k - k min ) nd(s) ^ nd (s)	 (10b)

Hence, the zeros of D.,(s), i.e. the system poles, which the

specs. require to l ie inMNQR in Fig. 2, are on the root loci

of
n (s)

1 + k(k'^- kmin ) a* . 0	 (10c)
Dd (s)

In the root-locus pattern determined by Eq. (10c) , the
open-loop poles are at the points denoted by --p t Pr Pr * in
Fig. 2. The problem is to choose Z, Z, the zeros of n d (s), to

guarantee that the root Loci of (10c) stay in the MNQR region

for kmax y k a kmin . To achieve this, it is certainly necessary

that the direction of departure of the root locus from P r * be
into MNQR by a comfortable margin. Consider the vector deter-
mined by the lines H1Pr*, 

H2Pr* 
in Fig. 2. It is reasonable

to require that the direction of the root locus departing

from Pr * be inside this o.r a somewhat similar sector,, in order



to ensure that the root loci remain within MNQR for kmax>k>kmin.

Obviously, there is some out and try involved here. In any
case, with 'this choice the requirement is that the root locus
angle of departure denoted by P, d, is constrained by the

relation ,12,113 0 1("
,
 I

d

A	 - 215o (see Fig. 2). Using the I angle of

departure' root-locub* thok orem (Ref. G, p. 125), and letting

0	 /l1)V * +1z1)__	 thorn is obtained the equation (Soo Fig. 2)
71 z	 -, 

0	 0	 0	 0	 090 4, 23	 0	
Oz	 1	 ;80	 giving 56 to O z < 1480 . The

locus of Z, Z such that O
z
 is constant,	 a circle through

Pr t P
r

 and through a third point X defined by /XP
"
	9.50z.

The two extreme values of 56 0 , 1430 for Oz thus determine
corresponding two extreme circles C,, C. in Fig. 2. Thus Z
may be located anywhere between C, , C 2 . From (9), it is
desirable to choose Z as far from the origin as possible in
order to maximize PO and cso minimize	 But when k max /k min
is large, V-1-An closed-loop pole at k - k max ) is very close to
Z. Hence an excellent choice for Z appears to be at the corner
R. However, one must check that the root loci of (10c) stay
in IV,!N'QR. This is done by finding the angle of entry (9 e )) of
the root locus into Z (Ref. 6 1 p. 125). The result is

^AO .2	 4	 11
0 Z77_ Vel IS Z is 	 Rt-'. T bis is clearly unaccept	 IL-able.	 o c a, o ri

of Z at -7 + j 0.5 gives 0. Z---- 94 0 which is satisfactory. Thus
a value obviously very close to (KI)min is found by means of
relatively little cut and try. The procedure for further
(marginal) minimization is obvious. The above choice gives

11 d (S) - s 2 + 14s + 49.25 and from (9), K	 2.52. To find
S A , P, of Eq. (6a), Eq,, (7) is sol ,,ed for d d(s)' The result
is dd (s) ;= s(s 2 + 11.5s + 23.4), which will involve dominant
plant pole cancellation and replacement. In order to decide
whether the economy in Kl , (and thereby in L(s) bandwidth and
in noise reduction), so obtained is justified, the optimum
(minimum K 1 )  design for specified (uncancelled) dd (s) is re-
quired. This case is included in the problem next considered.

8



C. Design in 
the Dominant Ranv.,e --

Case  Plant Poles and Gain Factor Vary

As an aid in presenting the design technique, consider

the case when the plant complex pole pair may range over the

region ABCD in Fig. 1. (Note the deliberate overlapping with

the acceptable system pole region which could not be handled
61by the previous method 7 . ) Equating coefficients in Eq. (7)

and in the note lvion of VqS. (6a, b) (except that S A , PA
 

are

replaced by Sp , P., since cancellation of plant poles is not

contemplated because of their large range of variation),

gives

X A	 AS p + kK - Sr + (kKPO /P r) " x + Yy (with Y = kKPOI

A	 AX = Sr, Y 
= 1/P r .)	 (11 a,b,c)

9

A	 I
Y t= P + kKs	 Yxy + —

P	 0	 y
(12)

and

kKP
O - P-rp r	 (8)

The relating of open-loop pole to closed-loop pole variations

is easily achieved in the X,Y plane because AX = A S P , AY = APP

at fixed k. (It will be seen that the variations in k are
usually more easily handled at a later stage by root-locus
methods). Therefore, the next stop is to use Eqs. (11), (12)
to map the acceptable MNQR region of Figs, 1,2 into the
X,Y plane, Since y is not a priori known, the mapping may
have to be done for several values c,,?	 PO does not in
practice have much of a permissible rang^w of variation (-MNQR),

so large y means large kK; i.e., large K1 0 Hence one starts
with small y and tries larger y if the former proves unsatis-
factory. This will be clarified in the later design details.
[It is obvious from 11, 12, or from the older method, 617 that
any minimum-phase problein can be solved by means of sufficiently
larg .^ kK.]

A simple way of performing the mapping is by means of
loci of constant Sr , P

r 
in the X,Y plane. Thus Eqs. (Ila),



(12) may be manipulated into

Y - YyX + (Y- . Y2
1	 Y2 

) i Y - X(X - X) + Y(X - X)1

(13a, b)

which are readily plotted by computer and shown in Fig. 3 for

Y = 600. The acceptable region M I N'Q'R I is also shown in

Fig. 3.
The final step is to map the plant variation region ABCD

of Fig. I into the XY plane in Fig. 3 and to see whether it
can be accommodated within the M I N I Q I R I region of Fig. 3.

Thus from (Ila, 12 ') the plant pole variations AS P	AXY

APP w Ay. The procedure is to first map the ABCD region of
Fig. I into an equivalent region A I B I C I D I in an Sp , Pp plane

whose units are the same as those of the X,Y plane. A181CID1

M.5,y then be cut out with scissors and one attempts to fit it

into the acceptable M I N I Q'R I region in Fig. 3. It is seen

that it cannot be precisely fitted inside M I N I Q I R, at Y = 600.

The mapping must be repeated at higher y (i.e., new loci of

constant Sr , P. with a resulting larger area M'N I Q I R; AIBICIDI

is unaffected.) In this specitt ic example, if A I B I C'D I is

located as shown in Fig. 3, the resultant s-plane closed-loop

region is that enclosed by the A I B I C I D boundary in Fig. 4.

Let it be assumed that the indicated excursion outside MNQR

is acceptable, so that y = 600 may tentatively be used. (Irt

is' fortuitous that part of the excursion involves an . over-

damped range whose extremes are given by the B', for it will

be shown that this permits a "far-off" L(s) pole to be in-

serted sooner than would ordinarily be possible.)

The tentative qualification is used in the above because

one must check whether aoceptable p f results and whether the

variations in k lead to satisfactory closed-loop pole varia-

tion. To check these matters, the parameters are evaluated at

Y = 600. In Fig. 3 any suitable point is chosen, say X = 32.2,

Y = 220; Sr = 8 Pr = 25; at which (by reading from the scales

on the portable A l B I C I D .1 graph) 6p	 -31 PP = $0. Since

(Eq. Ila), X = S
p 

+ kK = 32.2, kK	 35.2 and P. = Y/kK

60P /35.2 = 17. Also, Eq. (12), 80 + kKS O	Y = 220, so kKSO

140 and So = 140/35.2 = 4, and Eq. (8), p f	kKPO/P r = Y/PrP

10



so ( pf)mj.n r 600/36, which is satisfactory (since it is on
the left of UVW boundary in Fig. 1), (Note that K 1 is 35.2

here as compared to 2.52 in Section B where there was no

open-loop pole variation. This is a difference of 29db which
it will be seen results in a difference of about 3 octaves

in L(s). This is discussed in detail in Section E.) To check

the effect of the variations in k, the egtAvalent of Eq. (10c)
is used

D1(s) + K(k - k min ) n  (s) ^ 0	 (14)

The roots of (14) for kmin c, k < kmax give the

two dominant and one far-off closed-loop poles as a function

of k. D1 (s) , replacing Dd * (s) in (10c) represents D (s) at
k = kmin. Hence the zeros of D 1 (s) may lie anywhere in A'B'C'D'

in Fig. 4, previously obtained at the fixed k = kmin One
must therefore consider all possible root-loci for the infini-

tude of zeros of Di (s). It suffices to check the boundary of

A'B'C'D', by calculating the angles of departure. It is

found that over the entire boundary of A'B'C'D' the angles

of departure are all such as to lead to loci directed into the

interior of A'B'C'D'. If, in practice, it should not be so,

then one can be certain that sufficiently large Y will give a

satisfactory design. The objective is to get by with as small a
-y as possible

D. F'a.r-of f. L (s) Pole and Zero Locations

It has been noted that in the old design method, IL(jW)I

decreases at the rate of -6 db/octave over a large frequency

range, so that the required minimum gain margin of r20 log

(kmax min/k	 )] requires many octaves. In order to significantly

decrease the L(j W) bandwidth, a larger slope is required, in-

volving a staggering of poles and zeros in the higher fre-
quency range. This is difficult to do in the s-plane, and

much easier to design on a Bode plot. ri :-wever, it is then
necessary to translate the UVW boundary constraint of Fig. 1

into an equivalent constraint in the frequency domain. There

is a complex pole pair which 'threatens to cross the UVW, UW

11
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boundary. Let this pole pair be the zeros of s 2 + 2Cfwfs + wf2,

The parameters c, f , wf are closely related (Ref. 6, p. 197) to

the Bode plot type frequency parameters Gm (gain margin in

nepers), 0 m (phase margin in radians), we (defined by

I L (j wC ) - 1) , wn defined by Arg L ( j wn ) =-1800 ) . The approxi-

mate relations are:

W W2	 Gm  + am  (wTT2/wc 2)

WC	 Gtn 
+ am

(15a, b)
am G m
	 (wTT - 

WC )

f
am

^ + Gm 	 w f

They have been found to be fairly accurate--see for example,

Ref. 6, p. 279 and later in the present section. As k in-

creases from kmin WC  w TT increase and am , Gm change in value.

Hence, the WW boundary constraint on the far-off system

poles, may be restated as constraints on the above Bode-type

frequency parameters, and used as such in shaping L(jw) on the

Bode plot in the far-off  range . This may be done if one is
keenly interested in extreme optimization; i.e., an average

IL(jw)l slope close to -10	 - 11 db per octave:. The designer

may dispense with the above if he is content with an average

slope of -9 db/octave because the UVW constraints will then

obviously be satisfied (the phase margin is then N 45 0 over

most of the range in between wand w , the latter denotingc l	 c2

the crossover frequencies at kmin and kmax respectively.)

However, these relations may very usefully be used at wc2 it-

self in order that the last far-off lag corner frequencies

which must be inserted at w > wc2' may be introduced at as

low a frequency as possible (see Fig. 5) .
The detailed procedure in shaping L(jw) for the "far-off"

region is straightforward. From the viewpoint of the far-off

region, the poles and zeros in the dominant region are

equivalent to a single pole at s = 0. Hence one begins the
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Bode plot with a Bode sketch of L - Xk max Is. The first
decision which must be made is at how low a frequency one

may insert a lag-corner-frequency (denoted by lacf); i.e.,

at which point may the first far-off pole be placed, without

significantly affecting the pos:Ltions of the dominant system
poles assumed to lie in A'B'C'D' in Fig. 4. (Recall that in

obtaining A' B' C' D' in Figs. 3, 4, the far-off poles and zeros
were neglected.) Suppose a lacf at W =• 30 (i.e., a pole at

-30) is used. The maximum phase effect of a pole at -30, on

points `in A'B'C'D', is 80 . The magnitude effect is given by
PX' /PO I where X' is any point in A' B' C' D' and 1P is at -30.

There will consequently be negligible shifts in the assumed

root positions in -the A'C'A' region but nonignorable effects

on the points near the B' region; for example, a pole at --30

is not "far--away" with respect to the root at -8.9. Is the

effect desirable or undesirable? A little thought indicates

it to be an extremely desirable effect; in fact the B' points

are thereby forced into the more desirable MNQR region. A

bit of work with the spirule predicts that the extreme B'

points roots move to -4.3 :^ j 1.75, (B" in Fig. 4) which is
well inside MNQR in Fig. 4. Thus there will now be only

the small region near Z (Fig. 4) outside MNQR. With regard
to the UVW boundary, (Fig. 1) at k	 kmin LU c	Wcl , 28 (see
Fig. 5) and since the approximate relation of Eq. 15a always

gives Wf/WC ^ 1, the U'VW boundary specifications of Fig. 1
are easily satisfied at k >_ kmin so long as the average slope

of I L ( j w I is ,,, -9 db/octave . Such an average slope is
obtained by staggering poles and zeros as shown in Fig. 5

(poles at s=,-30,  -600, zeros at -125, -3000 but of course
th is is not unique) .

The final step is the assignment of the last far-off poles.
One decides upon the desired excess of poles over zeros of L(s).

In this example an excess of 5 was chosen. Eqs. (15a,b) may

be used, if desired, to economize to the utmost on the band.
width. There was no attempt to do so in this case. Rather,



with a little cut and try Din - 220 , Gm 3 db (at k - kmax)
was considered satisfactory. The approximate relations of

Eqs. (15a,b) then gave Wf pe 5600, ^f = 0.17 compared to the
computer values of wf = 5660, g f = 0.187.)

The result ing L (s)

14

(35.2)k(s2+4s+17)
s (s 4S ps+ Pp)

(	 + 1) (-- +1)

2
(^ +1) ( +^ ) ($ ) + (2-x000-- s+1um

Computer runs give very good verification of the design. The

points A', B 11 1 C 1 1 D' are found to be at --2.7 + j 4.06, -4.44 +
j 1.64, --3.0 + j 2.32, -1.83 + j 3.34 respectively, in good
agreement with the design values in Fig. 4; as k increases to

kmax' they converge towards Z inside A r B"C r D'. The far-off

roots easily satisfy the UVW boundary constraints of Fig. 1.

Design Structure and Compensation Blocks

To complete the design, a specific structure must be

ckiosen. Any two degree of freedom structure  may be used;

for example, that shown in Fig. 4. The design has guaranteed

dominant system poles in an acceptable region, but the specs.

may possibly require other fixed dominant poles and zeros in

the system transfer function T(s) 	 C/R. Let these denoted by

T (s). The dominant poles and zeros of F and H are thereby

completely fixed, as will be seen. The desig.,ner can arbitrarily

assign far--ofT poles and zeros to T(s) because these have
negligible effect on the system response, and a judicious

assignment may lower the complexity of F(s) and H(s). Let

the subscripts d,f denote dominant and far-off poles (or zeros)

respectively. Let D(s), sd(s) be polynomials representing
1	 11

the zeros of 1+L, poles of L respectively. Let A f (s), Df (S),
r	

Itdf (s), d f (s) represent portions of the corresponding polynomials,
I	 if	 r

with D(s) = Dd (s) Df (s) = Dd (s) Df (s) Df (s), df (s) = d F (s)
d f (s) . As usual, the leading coefficients in the d (s) , D(s)
polynomials is unity. Then, in the structure of Fig. 4



R*	 1 V
FP	 Fk/ (s2 + sSp + Pp ) s

T (s) T+L Dd (s)Df (s) Df
 
Os) /(s + sSp +Pp) s df(s)

	

Fk d f(s)
	

(17)
T	 11

Dd (s)Df (s) Df(s)
r	 t

If T(s) is set up as T(s) = kT(s) df (s)/Dd (s) Df (s), then

equating this with (17) gives	 to

F(s) =
T(s) D f (s)	

(18)rr
d f(s)

Also, L(s) = FPH - kK(s 2 + sSo + P0)/s (s2 + sSp + Pp ) d f (s) .

Combining the latter with (18) gives

K (s 2 + sso + Po)

	

H(s)	 (19)
df (s) T(s) Df (S)

From (18,19) it is seen that both F and H are simpli-

fied by letting D f (s) = 1, if sufficient far-off poles

have been assigned to L(s) to ensure proper high-frequency

behavior of F (s) and H(s).  These far-off poles may be

appropriately divided between F(s) and H(s) for this pur-

pose.

E. Feasibility of Pole Cancellation

When Plant Poles Vary

Section B considered the sensitivity problem for plant

gain variations with no plant pole variations, while

Section C considered the same spec. but with both pole and

gain variations. The difference in K1 was found to be 29 db,

which means that the final rapid decrease of I L (j w) I must

in the second case be about three octaves further off (with

noise effects N 23 worse than before) .

avoided? Consider, for the moment, the

plex plant pole pair varies a "little."

feasible to cancel the poles and locate

at the optimum point found in Sec. B, a

Can this be

case where the com-

Yt may then be

a fixed pole pair

n.d thereby use the

smaller K1 . However, due to the small plant pole variation,
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there will be a dipole in that neighborhood. Vence one

must add another specification, say, the maximum tolerable

residue in the pole (of the dipole) of the system step

response. The latter can be related to the maximum dipole

separation, as follows

Let the loop transmission be written in the form

Cs w sZ)
L(s) ^: L1 (s) (s_	 sPT

(20)

Suppose the closed-loop pole associated with the dipole is

at s  in Fig. 6; i.e., l + L(s d) = L1 (sd) A/B - 0. The

last complex equation is equivalent to the two real equa-

tions:

B/A = IL 
1 

(s 
d ) I , O z + O p 	-- eL (s d ) with ^ Z , ®p defined in

Fig. 6. Let u, v be a set of faxes as shown in Fig. 6.
The last two equations then become

^2	 2

u2 + v a (l + m2 )	 tam

(1 ^ M 	 m^
-	 ^	 (21a, b)

2
(u .. N) +v2 ^ a2 (1^^ lj)

N

with	 m	 L1(Sd) I , N d -^tan 0 L (sd)	 (22a, b)
L.

The(u,v) values which satisfy (21a,b) are the coordinates

=:^f S  in the u, v plane. Equations (21a, b) generate two
orthogonal families of circles, which. are plotted in

Fig. 7 with m, N as parameters. To use them, a value of

s  is assumed near the dipole, giving m and N. A  r,.tson--
able first try is to assume L 1 (s d) = L1 (sx) with s  at the

origin of the u,v axis. This determines a point in Fig. 7

(e.g., if at estimated s d , L1 = 0.5ZZ-EDO 0  then point M

in Fig. 7 results). The point M is used as the new trial

value of s d , etc. Assuming the point M is thus found,

the value of A (of Fig. 6) is that of is 
z 

M I in
Fig. 7 (Note ^s-4Sp I = 2a in Fig. 7). This enables

one to find the value of the maximum residue in the pole

at s  (in Fig. 6), of the system step response. This residue
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T(sd) 
A/Sd	

(23)

f I sd sd (	 gzsd I) . Since s d , for the postulated prob--
lem, is in the dominant region, the range of f T(s d) is
well known, so the range of R may be determined. If it is

satisfactorily small, then plant pole cancellation is

feasible and the more economical design of Section B may

be used.

If.4&is too large, then a design intermediate between the

two extremes of Sections B, C may bF, used, as follows. Let

K
l,min Kl,max be the two values of Kl obtained by the

methods of Sections BC respectively. If i (associated
with K1,min) is too large, it can be reduced by increasing
K1 because,it is clear from Fig. 7, the larger the value of m
(which is directly proportional to K 1 ), the smaller the
value of A in Fig. 6 and Fq.(23.) However, there is no

point, of course, in going so far as to take K1 > K1 max
for with Kl,maxI by the method of Sec. C, there is no
pole cancellation and the attendant dipole and need for

consideration of the residue. Thus, when there is plant

pole variation as well as gain variation, the two methods

of Sections B, C may be considered as the two extremes and

the rertUi ptne ,i Kl will he c,,,snrnewher^e between K1 max wnd
y

K1,min' When the plant pole variation is extremely large,

as in the example of Sec. C, then there is no doubt that

Kl .max of Sec. C must be used.

F. Generality of the Design Philosophy

The methods given here are, of course, restricted to

dominant type systems, thereby permitting dominant s-plane

design. The resulting loop transmission bandwidth is

larger than that required in non-dominant designs for which

presently there exist only frequency response methods. 6Y9

The former is, however, better in its correlation with

transient response. The treatment in Section D for the

far-off poles is applicable to all problems of the dominant
type. The detailed design technique in Section C is,

however, restricted to plants with varying dominant plant

poles and gain factor. It is not directly applicable to



plants with varying dominant zeros. Nevertheless, the

design philosophy of Section C is also applicable to

this case. It is only necessary to formulate the new

equations, obtain the analogs 
of 

Eqs. (11,12) and proceed

in the same manner.

G. Conclusions

This paper has presented techniques for designing dominant-

type systems subject to large parameter variations and with

specified acceptable range of dominant system pole posi-

tions. These techniques result in reduced loop trans-

mission bandwidth and internal noise sensitivity which is

smaller by several orders of magnitude than that obtainable

from the previous dominant-type design methods.

18
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